Charge transport in purple membrane monolayers: a sequential tunneling approach.

نویسندگان

  • E Alfinito
  • J-F Millithaler
  • L Reggiani
چکیده

Current-voltage (I-V) characteristics in proteins are sensitive to conformational changes induced by an external stimulus (photons, chemical, etc.). This sensitivity can be used in medical and industrial applications as well as shedding new light on the microscopic structure of biological materials. Here, we show that a sequential tunneling model of carrier transfer between neighboring amino acids in a single protein is the basic mechanism responsible for the electrical properties measured over a wide range of applied potentials. We also show that such a strict correlation between the protein structure and the electrical response can lead to a new generation of nanobiosensors that mimic the sensorial activity of living species. To demonstrate the potential usefulness of protein electrical properties, we provide a microscopic interpretation of recent I-V experiments carried out in bacteriorhodopsin at a nanoscale length.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoscale electrical conductivity of the purple membrane monolayer.

Nanoscale electron transport through the purple membrane monolayer, a two-dimensional crystal lattice of the transmembrane protein bacteriorhodopsin, is studied by conductive atomic force microscopy. We demonstrate that the purple membrane exhibits nonresonant tunneling transport, with two characteristic tunneling regimes depending on the applied voltage (direct and Fowler-Nordheim). Our result...

متن کامل

Modeling of Nanofiltration for ‎Concentrated Electrolyte Solutions using ‎Linearized Transport Pore Model

   In this study, linearized transport pore model (LTPM) is applied for modeling nanofiltration (NF) membrane separation process. This modeling approach is based on the modified extended Nernst-Planck equation enhanced by Debye-Huckel theory to take into account the variations of activity coefficient especially at high salt concentrations. Rejection of single-salt (NaCl) electrolyte is inve...

متن کامل

From self-assembly to charge transport with single molecules - an electrochemical approach.

Structure formation and self-assembly of physisorbed and chemisorbed organic monolayers will be describedon electrified solid-liquid interfaces employing in-situ scanning tunneling microscopy (STM) and surface-enhancedinfrared spectroscopy (SEIRAS) in combination with electrochemical techniques. We present first a casestudy on self-assembly by directional hydrogen bonding and its interplay with...

متن کامل

Cotunneling and nonequilibrium magnetization in magnetic molecular monolayers

Transport and nonequilibrium magnetization in monolayers of magnetic molecules subject to a bias voltage are considered. We apply a master-equation approach going beyond the sequential-tunneling approximation to study the Coulomb-blockade regime. While the current is very small in this case, the magnetization shows changes of the order of the saturation magnetization for small variations of the...

متن کامل

The rate of charge tunneling through self-assembled monolayers is insensitive to many functional group substitutions.

At its conception, the field of molecular electronics promised to provide the ability to engineer the rate of charge transport through the design of the molecular structure of electronic junctions. The hypothesis was that the electronic and geometrical structure of molecules in a junction would have a significant and predictable effect on the rate and mechanism of charge transport through their...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 83 4 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2011